The SDSC Storage Resource Broker

Chaitanya Baru, Reagan Moore, Arcot Rajasekar, Michael Wan
(baru,moore,sekar,mwan@sdsc.edu)

San Diego Supercomputer Center

9500 Gilman Drive, Bldg. 109, La Jolla, CA 92093-0505

Abstract

This paper describes the architecture of the
SDSC Storage Resource Broker (SRB). The
SRB is middleware that provides applications
a uniform API to access heterogeneous dis-
tributed storage resources including, filesys-
tems, database systems, and archival storage
systems. The SRB utilizes a metadata cata-
log service, MCAT, to provide a “collection”-
oriented view of data. Thus, data items that
belong to a single collection may, in fact, be
stored on heterogeneous storage systems. The
SRB infrastructure is being used to support
digital library projects at SDSC. This paper
describes the architecture and various features

of the SDSC SRB.

1 Introduction

The San Diego Supercomputer Center (SDSC)
is involved in developing infrastructure for a
high performance distributed computing en-
vironment as part of its National Partner-
ship for Advanced Computational Infrastruc-
ture (NPACT) project funded by the NSF. The
NSF program in Partnerships for Advanced
Computational Infrastructure (PACI), which
funds NPACI, has the goal of providing high-
end computing infrastructure for the academic
scientific and engineering community. SDSC is
the leading-edge site for one of NSF’s two PACI

grants (NCSA in Illinois is the leading-edge site
for the other grant). The PACI projects are
partnerships of multiple institutions and, by
definition, give rise to distributed computing
environments.

The NPACI computing environment consists
of compute and storage resources distributed
across the United States and connected via
high speed data links. It includes five compute
sites—at SDSC, California Institute of Technol-
ogy (Caltech), University of California, Berke-
ley, University of Texas at Houston, the Uni-
versity of Michigan—and over ten data cache
sites, with SDSC being the lead compute and
storage resource site. The compute resources
at SDSC include a 128-node IBM SP with
256MB memory per node, a 256-node Cray
T3E with 128MB memory per node, a 14-
processor Cray T90 with 4GB of memory, and
a TERA Multi-Threaded Architecture (MTA)
system [18]. The storage resources include a
High Performance Storage System (HPSS) [13]
archival storage system running on a 23-node
IBM SP and currently capable of archiving
120TB of data.

A key requirement of the NPACI infras-
tructure is support for data-intensive comput-
ing, which involves both providing high per-
formance I/O to massive data and providing
digital library capabilities for storage, search,
and retrieval of scientific data [2, 14, 15, 16].
As part of this infrastructure, we have de-

www.manaraa.com

veloped a Storage Resource Broker (SRB) to
provide seamless access to data stored on a
variety of storage resources, including filesys-
tems, database systems, and archival storage
systems. The SRB provides an API which en-
ables applications executing in the distributed
NPACI environment to access data stored at
any of the distributed storage sites. The API
provides the capability to do information dis-
covery, identify data collections of interest, and
select and retrieve data items that may be dis-
tributed across a wide area network. These ca-
pabilities are supported via the use of a meta-
data catalog and, in our previous work, we have
described issues in designing such a catalog
[3]. The SRB system, along with its associated
metadata catalog, is currently in use within
NPACI. In December 1995, an early version
of the system was demonstrated as part of an-
other project at SDSC, called the Distributed
Object Computation Testbed (DOCT) project
[10, 4]. In general, the SRB provides the type
of functionality expected in next-generation,
wide-area file systems and digital libraries [6].

As depicted in Figure 1, applications use the
SRB middleware to access heterogeneous stor-
age resources in a distributed system. The
SRB middleware employs a metadata cata-
log service, MCAT, which manages descrip-
tiwe as well as system metadata associated with
data collections and system resources. De-
scriptive metadata describes the contents of
entire data collections and/or individual data
items, while system metadata provides location
and access control information, again for col-
lections and/or items. Using the MCAT ser-
vice, the SRB stores and retrieves metadata
about system entities including, data collec-
tions, data items, storage resources, and users.
Besides providing location transparency, the
MCAT service enables attribute-based access
to data. This means that applications can be
freed from having to provide low-level details to
locate data and from the constraint of referenc-
ing data by path names. Instead, data items of
interest can be dynamically identified and read,
based on attributes that are meaningful to the
application, thereby enabling the ability to do
information discovery and automated process-
ing of data.

Section 2 describes the salient features of the

SRB Server

19 ot

DB2, Oracle, Illustra... HPSS, Unitree... UNIX
Digtributed Storage Resour ces

Figure 1: The SRB middleware.

SRB. Section 3 provides an overview of the sys-
tem architecture as well as details of the SRB
process model, and operation of SRB servers.
Section 4 provides a summary of on-going work.

2 SRB Features

The salient features of the SRB system include
an API for accessing data, a metadata catalog
for organizing data collection attributes, and
a data handling system for supporting remote
access of data.

2.1 Uniform storage interface

The SRB implements well-defined storage in-
terfaces to a variety of heterogeneous storage
resources. Currently, these interfaces include
a UNIX-like file I/O interface, and an interface
that supports get and put operations on storage
objects. The storage resources include filesys-
tems, database systems, and hierarchical stor-
age management system. The SRB middleware
provides a mapping from the defined storage
interfaces to the native interfaces supported by
each, underlying storage resource. This is done
via resource-specific drivers which implement
each interface for each resource.

www.manaraa.com

2.2 Metadata catalog

To support attribute-based access to data col-
lections and 1tems, and other system resources,
the SRB employs a metadata catalog service
called, MCAT, which provides a set of APIs
for querying and updating the metadata cata-
log. The items stored via SRB are associated
with descriptive as well as system metadata.
Currently, a standard schema is provided for
the descriptive metadata, which includes at-
tributes similar to those specified in the Dublin
Core [7]. We are currently implementing an
extensible framework that will allow users to
define and register schemas, since descriptive
metadata may be specific to collections and/or
items. The system metadata includes informa-
tion used to locate and control access to data.
For some metadata, e.g. location information,
the actual set of attributes that are stored in
the catalog may vary, depending on the type of
resource.

2.3 The Collection Hierarchy

Data stored via the SRB is organized along a
hierarchy of collections and sub-collections, de-
fined as follows:

e A collection contalns zero or more data
1items and zero or more sub-collections.

e A sub-collection contains zero or more
data items and zero or more other sub-
collections.

e A data item is a file or binary large object

(BLOB).

The SRB storage model allows data items be-
longing to the same collection/sub-collection,
to be stored in physically distributed, hetero-
geneous storage resources.

2.4 Hierarchical Access Control

Access to collections, sub-collections, and data
items, is based on the collection hierarchy.
Users may control the propagation of various
privileges along this hierarchy. The set of priv-
ileges itself is extensible [5].

2.5 Tickets

A flexible mechanism for controlling read access
to data is provided via the concept of fickets.
Users with the appropriate privilege on collec-
tions/items, may issue tickets on those objects
to other users. These tickets are valid either for
a fixed amount of time or for a fixed number of
uses. The ticket mechanism thus provides the
ability to issue constrained read access to data,
for any subset of users in the system. It works
as follows:

e The user who has control privilege on a
data item or collection (e.g. the creator
of the object) [5], may issue tickets to a
user, or group of users, on that data item
or collection.

e The ticket itself is implemented as a
10-character alphanumeric string that is
passed from the ticket issuer to the ticket
users. A ticket user can then use this ticket
to open and read data objects.

The MCAT catalog distinguishes between
registered versus unregistered users. Regis-
tered users are those for whom the necessary
metadata is already available in MCAT. Un-
registered users are anonymous users of the
SRB/MCAT system. Tickets can be issued to
registered as well as unregistered users. To use
tickets, unregistered users use a special call to
connect to the SRB server. Such users may
only read data for which they have read autho-
rization. They are not allowed to perform any
other function.

2.6 Physical Storage Resources
(PSRs)

The SRB middleware manages a set of physical
storage resources (PSRs). A PSR is defined as

follows:

e For storage resources with file system in-
terfaces: a PSR is the (hostname, path-
name) combination, indicating a particu-
lar directory path on a particular host.

e For storage resources with database sys-
tem interfaces, a PSR is the (hostname,
database_id, table_id) triple, indicating

www.manaraa.com

a host, a particular database on that
host, and a particular table within that
database. The set of parameters employed
to identify a database and a table may
vary, depending on the specific vendor

DBMS.

2.7 Logical Storage Resources
(LSRs) and Replication

A set of one or more PSRs can be combined into
a single logical storage resource (LSR). Thus,
an LSR may contain one PSR which is a ta-
ble in an Oracle database, another which is a
directory path in HPSS, and a third which is
a directory path in an AIX filesystem. Client
APIs typically refer to LSRs, and not PSRs.
Collections are implemented using LSRs, while
data items are added to collections. A data
item is replicated across all PSRs contained in
the LSR associated with the corresponding col-
lection. For read operations, a data item can
be read from any one of the associated PSRs.

2.8 Proxy operations

The SRB provides several data handling op-
erations that are performed without involving
the client, 1.e. without moving data from the
server to the client (and back). Such opera-
tions are referred to as proxy operations, since
they are performed by the SRB on behalf of the
client application. Examples of such proxy op-
erations are, move and copy, which allow users
to move data directly from a source to a target
resource, without involving the client.

2.9 Federated operation

Access to distributed storage resources is pro-
vided via a federation of SRB servers. Each
SRB server controls a distinct set of PSRs. The
federated SRB scheme allows one SRB server to
act as a client to another SRB server. This en-
ables a client application to access data stored
anywhere in the distributed system, even if the
application is not directly connected to the con-
trolling SRB server.

2.10 Authentication and encryp-
tion

The SRB client-server communications proto-
col supports a variety of authentication sys-
tems. The simplest is a standard, “clear text”
password-based authentication scheme. Pass-
word information is maintained by the MCAT
metadata service. In addition, the SRB sup-
ports user authentication and data encryption
based on the SEA system [19], which employs a
public-private key mechanisms (RSA), a sym-
metric key encryption algorithm (RCH), and
provides simple key management capabilities.
Using SEA, clients may optionally request en-
cryption on the sockets used for client-server
communications. The SEA library is also used
to authenticate and encrypt all inter-SRB com-
munications during the federated SRB opera-
tion.

2.11 Activity Logs

Storage and metadata update operations per-
formed via the SRB can be logged by the sys-
tem using MCAT. When creating a data collec-
tion or data item, the user may specify whether
operations performed on that object should be
logged by the system. However, logging of
such information is viewed as being voluntary.
Therefore, a user accessing an object can turn
off such logging, even if the creator of the ob-
ject had requested activity logging.

2.12 Types of Applications

The goal of the SRB middleware is to improve
the operating environment for scientific appli-
cations that have the requirement to access
and process many scientific data sets. Cur-
rently, such applications deal primarily with a
file model, where each individual application is
required to keep information of the set of files
of interest and store low level information, such
as directory path and file name, for each file.
If the data are stored in different storage sys-
tems, each application must have the interface
to each storage system. Also, applications are
typically able to access only local data, and not
data that is distributed across a wide area.

By using the SRB middleware, scientific ap-
plications can now issue ad hoc queries on the

www.manaraa.com

Application

3. Return connectign'info

4 Al subsequent operations

s ()
@@@

Figure 2: The SRB Process Model.

metadata to identify data of interest. They can
then use the SRB API’s to access data stored in
distributed, heterogeneous storage resources.

3 System Architecture

The SRB middleware consists of one or more
SRB Master daemon processes and SRB Agent
processes associated with each Master. Each
SRB Master is uniquely identified by its (host-
name, port number). Each Master also controls
a distinct set of PSRs. Conversely, each PSR
is controlled by a single SRB Master.

The Master monitors its well-known port
for connection requests from clients. Clients
and servers communicate via sockets, using
TCP/IP connections. Figure 2 shows the steps
involved in connection processing, which are:

e Step 1: Client issues a connect request to
the SRB Master, which first authenticates
the client, possibly using the SEA library.

e Steps 2,3: The SRB Master forks a SRB
Agent to service the authenticated connec-
tion and returns the connection handle to
the client. Each client connection 1s ser-
viced by a distinct SRB Agent.

e Step 4: The client uses the SRB Agent for
all subsequent communications.

A client may establish only a single connec-
tion to a given SRB Master. However, it may
establish concurrent connections to multiple,
distinct SRB Masters. A single connection may

be used to access multiple data items, possibly
stored on different PSRs.

The SRB Agent uses the MCAT metadata
service to obtain the necessary system meta-
data needed for processing client storage re-
quests. For example, the client may issue a
request to open a data item identified by the
name of the collection and the name of the
item. This requires the SRB to access MCAT
to obtain the corresponding LSR and PSR in-
formation. For example, if the data item was
stored in an HPSS PSR, MCAT would contain
the neccesary information for connecting to the
particular HPSS server and for locating the file
within that server. If the PSR is not under con-
trol of the current SRB Master (i.e. the Master
through which the client has connected), then
the SRB federation mechanism is invoked to
obtain access to the appropriate PSR contain-
ing the data item. This is further described in
Section 3.2.

3.1 The Metadata Catalog Ser-
vice, MCAT

Data items managed by the SRB system are
referenced by the collection/sub-collection un-
der which they reside, and by their name. This
i1s similar to a directory name and file name
in a file system. However, in the file system
paradigm, the directory/file name also implies
the physical location of the file. In contrast,
the physical location of a data item stored via
the SRB is distinct from the logical collection
hierarchy under which it resides and the logical
name of the file. Data items in the same col-
lection may, in fact, reside on different storage
systems. Thus, a given collection may contain
several data items with one residing in a local
UNIX filesystem, another residing in a remote
database system, and a third residing in a re-
mote archival storage system.

The metadata catalog is used to record loca-
tion information for storage resources (PSRs)
as well as for data items. The catalog also con-
tains metadata that is used for implementing
hierarchical access control, the collection/sub-
collection hierarchy, and the ticket mechanism.
The catalog metadata also describes the con-
tents of collections and/or data items. This
enables attribute-based querying and identifi-

www.manaraa.com

cation of data. We are currently implement-
ing mechanisms for registering new metadata
schemas and querying/updating their contents.

The MCAT catalog has been implemented
in DB2 UDB and Oracle. In the current im-
plementation, the catalog may be used either
as a a central resource or as a local resource.
In the former case, all metadata requests are
directed to a single, central catalog. While the
access to the data item itself does not require
accessing the catalog, the central catalog may
still cause undue communication overheads and
create a resource bottleneck for metadata ac-
cess. While we have not yet reached that stage
in our deployed systems, we are investigating
the possiblity of replicating MCAT itself (for
example, using the built-in replication capabil-
ities provided by DB2 UDB or using the Oracle
Replication Server).

In the case where MCAT is used as a local
resource in a distributed system, different ap-
plications could use different MCAT catalogs
depending on the SRB Master to which they
connect. However, each catalog can only be ac-
cessed individually, i.e. we do not yet support
federation of MCAT catalogs.

3.2 Federated Servers

In a distributed system, one may choose to con-
trol different storage resources using different
SRB Masters, due to a variety of technical and
administrative reasons. For example,

1. different storage resources may be under
different administrative domains, each of
which wishes to maintain its own SRB en-
vironment and, consequently, runs its own
SRB Master

2. system performance may be improved by
running multiple SRB Masters and allow-
ing clients to connect to different Mas-
ters, in order to access different storage
resources

3. system availability may be improved by
having different SRB Masters control
PSRs on different hosts, and by replicat-
ing data across such PSRs. Synchroniza-
tion among replicas is handled as follows.
When an application creates a replicated

Application

HOST B
SRB
SRB M aster
Master 3
SR@ent
(
SRB Agent 4
2

Figure 3: Federated SRB Operation.

data item and writes to it, the SRB sys-
tem ensures that this data is written to
all replicas. If there is a failure during
the creation or writing of any of the repli-
cas, then an “inconsistent” flag is set for
the failed replica(s). If the application
so chooses, it may continue writing into
the other replica(s). When an application
opens a data item for read, it can choose
to open any one of the associated replicas.
However, if a replica has its “inconsistent”
flag set, then the system will not allow that
replica to be opened.

Inconsistent replicas can be “synchro-
nized” with consistent replicas via a repli-
cate operation which copies data from the
most up-to-date replica into all other repli-
cas.

4. some storage systems may not offer ef-
ficient support for client-sever operation,
thus requiring a SRB Master to run on the
same host as the storage system itself

5. in systems such as HPSS, the SRB Master
may be required to run under the same
DCE cell as the HPSS system. Thus, the
existence of multiple HPSS systems may
require running multiple SRB Masters.

Figure 3 shows the operation of a federated
SRB system consisting of two hosts, A and B,
each of which runs a SRB Master. For example,
a request to open a data item, D, on Host A
results in the following sequence of events. The
client on Host A connects to the SRB system.
After successful connection:

www.manaraa.com

1. The SRB client issues its request to open
the data item, D, for reading.

2. The SRB Agent on Host A refers to
the MCAT catalog service and determines
that D is in a PSR controlled by the SRB

Master running on Host B.

3. This agent then issues a connect request to
the SRB Master on Host B and passes the
original open request. The Master on Host
B authenticates its client (SRB agent) and
then services this open request. A file han-
dle is returned to the agent on Host A.

4. The agent on Host A returns this file han-
dle information to its client.

5. The client application on Host A may now
access the data item in Host B, using the
returned file handle.

In the above scenario, an option for the client
application on Host A is to determine, at the
outset, the address of the SRB Master which
controls the data item, D. In the case of repli-
cated data, there could be multiple masters.
The client can then directly connect to one of
the masters and thereby by-pass the federated
SRB mechanism, if desired.

3.3 The SRB Agent Design De-
tails

The major internal software components of the
SRB Agent are shown in Figure 4. The Dis-
patcher module monitors incoming client re-
quests and dispatches requests to the High-
Level Request Handler or the Low-Level Request
Handler. The Dispatcher is also responsible
for returning results to clients. The difference
between the two request handlers is that the
high-level handler maps user names and data
item names to access control and location in-
formation using MCAT, whereas, the low-level
handler expects the caller to provide the de-
tailed parametric information necessary for ex-
ecuting a particular storage request. The typi-
cal parameters that are passed at this level are
hostname, storage system type, and physical lo-
cation information. Only privileged SRB users
are allowed to directly invoke the APIs associ-
ated with the low-level handler.

DISPATCHER: monitorsinput port and dispetches requests o handlerg

High Level Renued
Hender

Low Level Request Handler I
Filesystem drivers DBMSdrivers
Unitree HPSS UNIX | DB2 Oracle OtjectStore Ilusti

Figure 4: The SRB Agent Details.

Based on the native interfaces supported
by storage resources, the correpsonding SRB
drivers are grouped into two types, filesys-
tem drivers and DBMS drivers. Storage re-
sources that have filesystem drivers include
UNIX (and its variants), HPSS, ADSM, and
UniTree. DBMS drivers are used for resources
that provide a large-object (or, BLOB) inter-
face to storage, e.g. DB2, Oracle, Illustra, and
Objectstore.

3.4 Client API’s

Several sets of client APIs are provided to allow
SRB clients to perform a number of different
types of functions, which are discussed briefly
in the following subsections.

3.4.1 Query/update of metadata

A set of APIs are provided for querying and up-
dating the information in the MCAT catalog.
The sample subset is shown in Appendix A.3.
For example, the srbGetDataltemiInfo API can
be used to query the metadata attributes of
data items. This set of APIs allows applica-
tions to manage metadata associated with data
collections, data items, users, user groups, and
storage resources. As mentioned above, the
high-level request handler in the SRB middle-
ware 1s itself a client to the MCAT catalog and
uses these APIs.

www.manaraa.com

3.4.2 Connecting to the server

Appendix A.1 shows the set of API calls related
to establishing and using client/server connec-
tions. These include the usual connect and
disconnect (¢lFinish) calls as well as a special
type of connect call used by clients holding SRB
tickets. For a “ticketed connection,” the system
does not perform user authentication. Instead,
it verifies that the ticket offered by the client
is associated with the data collection/item that
the client wants to access and encodes the nec-
essary level of permission to perform the re-
quested operation on the specified object.

3.4.3 Creation of data items

The API used for creating new objects is listed
in Appendix A.2 (srbObjCreate). When a client
issues a request to create an object, the SRB
first obtains access control information from
MCAT to verify user permissions. If the user
has the privilege to create a data item under
the specified collection in the requested storage
resource, then the system generates a unique
physical path name (e.g., UNIX or HPSS path
name, or database LOB id) in that storage re-
source. Next, a create request is issued to the
low-level request handler. If the create is suc-
cessful, then the corresponding metadata is reg-
istered in MCAT, including information about
the data item name, the associated collection,
the corresponding PSR, and the user name. Fi-
nally, a data item handle i1s returned to the
client which is used in subsequent read/write
calls. If the call to register the data is unsuc-
cessful, a low-level unlink call is issued to re-
move the data item and an error is returned to
the client.

3.4.4 Open/read/write/delete of data
items

Appendix A.2 lists some of the APIs for open,
close, read, write, and unlink of data items as
well as APIs to perform replication and grant
tickets.

The open operation requires querying MCAT
to obtain the necessary metadata for the data
item. The read/write operations are direct
storage operations which need not involve the
MCAT service (unless activity logging is turned

on). Deletion of a data item requires updates
to MCAT to “de-register” the data item.

4 Related Work

Work related to the SRB includes the scien-
tific data archive effort at the Pacific Northwest
National Labs (PNNL) [1], the AFS filesys-
tem [12, 20], the Synopsis project [6], DB2
Datalinks [8], and the IBM Digital Library
product [9]. The PNNL project provides a
metadata catalog to query attributes of data
sets that are stored in an archival storage sys-
tem. The system is restricted to accessing data
from archives and does not support remote
filesystem and/or database systems. AFS pro-
vides support for wide area UNIX-like filesys-
tems. Thus, it provides a file I/O interface to
distributed files. However, it does not integrate
access to database systems (DBMS) and hier-
archical storage management (HSM) systems
(note that there is a current effort to provide a
DFS interface to the HPSS HSM system). In
addition, AFS does not provide the ability to
query metadata associated with a data item to
identify items of interest. The Synopsis system
provides an object-oriented filesystem and the
ability to query metadata associated with ob-
jects. However, it does not integrate access to
resources such as DBMSs and HSMs. It does
provide certain useful, object-oriented capabil-
ities which are not currently available in the
SRB/MCAT system, such as the ability to rec-
ognize the type of an object and use this infor-
mation for appropriate display of an object.

The IBM Datalinks is a feature introduced in
the recent version of IBM’s DB2 UDB database
product which provides the ability to store
URL’s referring to external file objects within
a database, and provides referential integrity
and recovery for such files in conjunction with
the associated database. This may be used
to provide a “tight” linkage between metadata
stored 1n the database and the corresponding
files which are stored externally. The exter-
nal files may be stored on disk or in an HSM
(Datalinks currently only supports the ADSM
HSM system).

The IBM Digital Library product consists
of a set of distributed servers including Li-

www.manaraa.com

brary Servers and Object Servers. The meta-
data is stored in the Library Server while the
actual data objects are in the Object Server.
The object servers have the ability to migrate
data to an HSM. The product also supports
text and image indexes. Thus, a client may
query the metadata stored in the library server,
which may result in a SQL query on a rela-
tional database, as well as a search request on
a text index and/or an image index. The re-
sult is a set of object handles which can be
used to retrieve the object(s) from the object
server. Note that there is the possibility of us-
ing the Datalinks feature to provide tight link-
age between the Library Server and the Object
Server.

The SRB system differs from those men-
tioned above in that it provides a simplified
SQL-like interface to the metadata with a file
I/O interface to the actual data item, which
may reside in a filesystem, database system, or
archival storage system. Thus, the SRB sys-
tem supports more types of storage resources.
It has been implemented for a variety of stor-
age systems and OS platforms, as listed in the
next section.

5 Current Status

The SRB system is currently in release 1.2.
Both the client library as well as the server
have been implemented for AIX, Sun Solaris,
SunOS, SGI Irix, DEC OSF, Cray €90, and
Cray T3E. The MCAT catalog has been imple-
mented using Oracle as well as DB2. The UC
Berkeley ELIB [17] and UCSB Alexandira Dig-
ital Library (ADL) [11] are both being mirrored
at SDSC. In both cases, the SDSC implementa-
tion employs the SRB to provide seamless ac-
cess to data that are stored in the HPSS hi-
erarchical storage management system. Other
applications currently using the SRB technol-
ogy include the Environmental Sciences digital
library (ESADR).

For the next release of the SRB, we are work-
ing on items related to support for extensible
schemas, application-specific schemas, registra-
tion and execution of user-defined proxy op-
erations (UDPOs), and metadata schema for
image data. We are also investigating various

type-specific operations (e.g. for image data)
that can potentially be implemented as buili-in
proxy operations. System performance is also
an item for study. We wish to study the impact
of a central MCAT catalog. If this is a sig-
nificant bottleneck, we will investigate catalog
replication and/or partitioning as approaches
to solving the problem. Also, while the SRB
middleware is a relatively “thin” layer, we are
interested in studying the impact of its path
length on the overall system performance. An-
other aspect is the impact on performance of
having a large number of concurrent users in
the distributed SRB system.

Acknowledgements

The authors are members of a larger group
that has contributed to the design, develop-
ment, and deployment of the SRB system. At
SDSC, Richard Frost helped develop several of
the initial concepts of SRB and MCAT. Subse-
quently, he also helped develop the test suites
and installation scripts for the SRB/MCAT
software. Wayne Schroeder is the architect
and implementor of the SEA system, and also
implemented the SRB drivers for Illustra and
ftp. Richard Marciano helped with the de-
sign of MCAT catalog tables and also did some
early experiments with a prototype, LDAP im-
plementation of the catalogs. The SRB Ora-
cle driver was implemented by Randall Sharpe
and Robert Templeton of NCSA, Illinois. The
ObjectStore driver was implemented by David
Wade of SAIC. Interfacing the SRB to the
ADSM system at the University of Michigan
was done by Thomas Hacker at Michigan.

This work 1is supported by grants from
the NSF, under its PACI program, and by
DARPA Project F19628-95-C-0194 (MDAS)
and Project F19628-96-C-0020 (DOCT).

About the Authors

Chaitanya K. Baru: is Senior Principal Scien-
tist and Manager of the Data Intensive Com-
puting Environments (DICE) group at SDSC.
He leads the development activities within the
DICE group and is one of the designers of
the SRB/MCAT system. His research interests

www.manaraa.com

are in database systems, semistructured data,
mediation-based systems, digital libraries, and
archival storage systems. Prior to joining
SDSC in 1996, he was one of the team lead-
ers of IBM’s DB2 Parallel Edition Version 1, at
the IBM Toronto Labs. He received his Ph.D.
in Electrical Engineering from the University of

Florida, 1983.

Reagan W. Moore: is an Adjunct Professor in
the CSE department at the University of Cal-
ifornia San Diego, and the Associate Director
for Enabling Technologies at the San Diego Su-
percomputer Center. His areas of interest in-
clude Information Based Computing and the
development of infrastructure needed to sup-
port scientific data collections. He has a PhD
in Plasma Physics from UCSD, 1978.

Arcot Rajasekar: is a Staff Scientist in the Data
Intensive Computing Environments group at
SDSC, and a member of the SRB develop-
ment team. He leads the development of the
MCAT Metadata Catalog. His research inter-
ests include digital library systems, data min-
ing and database-oriented reasoning, and logic
programming and default reasoning. He re-
ceived his Ph.D. in Computer Science from
University of Maryland, 1988.

Michael Wan: is a Senior Staff Scientist in
the Data Intensive Computing Environments
group, and member of the SRB development
team. He is responsible for the overall archi-
tecture and engineering of the SRB software
and has implemented most of the data han-
dling functionality of the SRB client and server
software. He has previously worked on a va-
riety of kernel/system-level projects including,
kernel level memory and job schedulers, an ap-
plication level job mix scheduler, network de-
vice driver, and trouble-shooting of the Intel
Paragon OSF-based kernel. He received his MS
in Nuclear Engineering from Georgia Institute
of Technology in 1972.

10

References

(1]

D. Adams, D. Hansen, K. Walker, and
J. Gash. Scientific data archive at the
Environmental Molecular Sciences Labo-
ratory. In Procs. of Sizth Goddard Confer-
ence on Mass Storage Systems and Tech-
nologies, p.409, Silver Spring, MD, 1998.

C. Baru. Archiving Metadata. In Procs. of
Furopean Conf. on Digital Libraries (EU-
roDL, Crete, Greece, 1998.

C. Baru, R. Frost, J. Lopez, R. Marciano,
R. Moore, A. Rajasekar, and M. Wan.
Metadata design for a massive data anal-
ysis system. In Procs. of CASCON’96,
Toronto, CA, 1996.

C. Baru, R. Moore, A. Rajasekar,
W. Schroeder, M. Wan, R. Klobuchar,
D. Wade, R. Sharpe, and J. Terstriep.
A data handling architecture for a proto-
type federal application. In Procs. of the
6th Goddard Conference on Mass Storage
Systems and Technologies, Silver Spring,
Maryland, 1998.

C. Baru and A. Rajasekar. A Hierarchi-
cal Access Control Scheme for Digital Li-
braries. In Procs. of the ACM Conf. on
Digital Libraries, Pittsburgh, PA, 1998.

M. Bowman and B. Camargo. Digital Li-
braries: The Next Generation in File Sys-
tem Technology. D-Lib Magazine, Febru-
ary, 1998.

Dublin Core. Dublin Core Metadata.
In hitp://purl.org/metadata/dublin_core,
1997.

J. Davis. Datalinks: Managing external
data with DB2 Universal Database. In
hitp://www. software.ibm. com/data/pubs/
papers/datalink.hitml, TBM Corporation,
1998.

IBM DL. IBM Digital Library. In
hitp://www.software.tbm.com/is/dig-lib,
IBM Corporation, 1998.

DOCT. The Distributed Object Compu-
tation Testbed Project. In hitp://www.

www.manaraa.com

[16]

[17]

[19]

sdsc.edu/DOCT, San Diego Supercom-
puter Center, La Jolla, CA, 1998.

J. Frew, M. Freeston, R. Kemp, J. Simp-
son, T. Smith, A. Wells, and Q. Zheng.
The Alexandria Digital Library testbed.
D-Lib Magazine, July/August, 1996.

J.H. Howard, M.L. Kazar, S.G. Menees,
D.A. Nichols, M. Satyanarayana, N. Side-
botham, and M.J. West. Scale and perfor-
mance in a distributed file system. ACM
Transactions on Computer Systems, 6(1),

1996.

HPSS. High Performance Storage Sys-
tem. In Attp://www.sdsc.edu/HPSS, San

Diego Supercomputer Center, La Jolla,

CA, 1997.

R. Moore. Enabling petabyte comput-
ing, The Unpredictable Certainty, Infor-
mation Infrastructure through 2000. Na-
tional Academy Press, 1997.

R. Moore, C. Baru, S. Karin, and A. Ra-
jasekar. Information based computing.
In Procs. of the Workshop on Research
and Development Opportunities in Federal
Information Services, Washington, D.C.,
1997.

R. Moore, R. Marciano, M. Wan, T. Sher-
win, and R. Frost. Towards the inter-
operability of Web, database, and mass
storage technologies for petabyte archives.
In Procs. of the 5th Conference on Mass
Storage Systems and Technologies, Silver

Spring, MD, 1996.

V. Ogle and R. Wilensky. Testbed Devel-
opment for the Berkeley Digital Library
Project. D-Lib Magazine, July/August,
1996.

W. Pfeiffer. Evaluation of a Multithreaded
Architecture for Defense Applications. In
http://www.sdsc.edu/mta_eval/darpa, San
Diego Supercomputer Center, La Jolla,

CA, 1997.

W. Schroeder. The SDSC FEncryption
and Authentication (SEA) System. Con-
currency Practice and FErperience, April,

1998.

11

[20] A. Spector and M. Kazar. Wide-area file
service and the AFS experience. UNIX Re-
view, 7(3), 1989.

APPENDIX A

A.1 Examples of client /server connection
APIs

This set of APIs handles opening and closing a
connection to a SRB server.

clConnect - Initiate a connection to a SRB Mas-
ter.

tiUserConnect - Initiate a connection to a SRB
server by a user holding a “ticket” token. Nor-
mal user authentication will be bypassed for
such users.

clFinish - Close an existing SRB connection.
clErrorMessage - Return server error message,
if any, associated with the most recent client
call.

A.2 Examples of APIs associated with
data collections/items

The following set of API’s are used for per-
forming standard storage operations.

srbCreateCollect - Create a data collection.
srbListCollect - List a data collection.
srbModifyCollect - Update attributes of a data
collection.

stbObjCreate - Create a data item.
stbO0bjOpen - Open a data item.

stbObjOpen WithTicket - Open a data item us-
ing a ticket.

srbObjClose - Close an opened data item.
srbObjUnlink - Unlink a data item.
stbObjRead - Read a block of data from a data
item into buffer.

stbObyjWrite - Write the content of a buffer to
a data item.

srbObjSeek - Change the current read or write
location for a data item.

srbObjProzyOpr - Execute specified proxy op-
eration.

srbObjReplicate - Replicate data item.
stbObjMove - Move a data item to a new loca-
tion.

www.manaraa.com

srblssueTicket - Issue a ticket on a data
item/collection.
srbRemoveTicket - Cancel a ticket on a data
item/collection.

A.3 Example of MCAT APIs
This is a sample set of API’s for querying and
updating information in the MCAT catalogs.

srbGetDatalteminfo - Get values of attributes
associated with a SRB data item.
srbGetDataDirInfo - Get values of attributes
associated with collections.
srbModifyDataltem - Modify attributes of a
data item.

srbSetAuditTrail - Set/reset activity logging.
stbChkMdasAuth - Authenticate a
username/passwd.

stbChkMdasSysAuth - Authenticate a user-
Name/password for system administrator-level
access.

srbRegister UserGrp - Register a new user group
in the system.

srbRegisterUser - Register a new user in the
system.

srbModifyUser - Modify attributes of a user
info.

srbGetPrivUsers - Get the current set of privi-
leged users.

srbGetMoreRows - A cursor-like operation to
get further rows from a result set created by
a previous operation such as, srbGetDataset-
Info, srbGetDataDirInfo, srbListCollect or sr-
bGetPrivUsers call.

12

www.manaraa.com

